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MIA s 

From the analysis of a simple evaporation-heat-transfer system it is shown that the 
temperature drop required by the second law of thermodynamics occurs at the liquid- 
vapor interfaces. The temperature drop is estimated for conditions comparable to those 
in a 30-kilowatt, 1800 K lithium heat pipe. A simple one-dimensional treatment of the 
fluid dynamics in a high-temperature heat pipe is used to predict pressure drops in such 
a pipe. The effects of evaporation and condensation on wall friction in turbulent flow a re  
included in the analysis. The additional friction due to condensation is shown to reduce 
the pressure recovery by a factor of 2.  Detailed calculations a re  presented for two 
1800 K lithium heat pipes. 

INTRODUCTION 

The typical heat pipe consists of a closed pipe, which serves as a containing enve- 
lope; an internal wick-like structure running the length of the pipe; and enough liquid to 
f i l l  the wick. Heat transfer is achieved by the evaporation of liquid at one end of the 
pipe, transport of the vapor to the other end of the pipe, condensation of the vapor, and 
return of the liquid through the wick by capillary action. As the heats of vaporization 
of normal working fluids are very large, high heat-transfer rates can be obtained with 
relatively small temperature drons and fluid flow rates compared to those of other de- 
vices. In a particular application the choice of working fluid and the type of wick are 
determined by considerations such as the operating temperature range and the required 
heat flux. General review papers touching on many types of heat pipes are currently 
available (refs. 

mass flow in a heat pipe requires a temperature drop over and above that required to 
It is relatively easy to demonstrate, using the second law of thermodynamics, that 



conduct heat to and from the evaporating and condensing surfaces. It is not immediately 
obvious, however, where this temperature drop occurs. For this reason, in the pres- 
ent work a simple evaporation-heat-transfer system is analyzed, and the temperature 
drop is estimated for conditions comparable to those in an 1800 K lithium heat pipe. 

pipes with high heat fluxes. Such a pipe finds its major application in the areas of high- 
temperature nuclear reactors and thermionic power systems, areas  of current interest 
to the author. The normal working fluids a re  alkali metals which have vapor pressures 
of a few atmospheres at the temperatures of interest. The high vapor pressures permit 
high heat fluxes at low Mach numbers; this in turn means that the vapor flow can be con- 
sidered to be incompressible. In addition, the high heat fluxes generally lead to turbu- 
lent vapor flow. These restrictions have been incorporated in a simple one-dimensional 
analysis of liquid and vapor flow in the evaporator, adiabatic, and condensor sections of 
a heat pipe. Measurements of the effects of injection and extraction of fluid on wall 
friction in turbulent flow have been reported in the recent literature. These results 
have been included for the first time in the present heat pipe analysis. Numerical cal- 
culations of pressure drops a re  presented for two lithium heat pipes. 

The present fluid dynamic treatment is most appropriate to high- temperature heat 

We consider a simple evaporation-heat-transfer system as sketched in figure 1. 
Liquid is evaporated at surface 1; the vapor flows at a low velocity, with constant pres- 
sure p3 and temperature T3, to surface 2 where it is condensed; and the liquid is 
returned to surface 1 by a separate channel (see appendix A for definition of symbols). 
The vapor passage is assumed to be large and thermally insulated so  that frictional 
effects and heat transfer to or  from the passage are negligible. Net heat conduction 
through the vapor is neglected. The frictional pressure drop in the liquid return passage 
is balanced by capillary forces produced by a fine mesh screen situated at surface 
t is assumed that heat can be supplied directly to surface 1, so that no temperature 

drop across the liquid is required, and removed directly from surface 2. 

must be less than TI. Work can be obtained from the system without altering T1 or 
T2 by inserting a small turbine in the liquid return passage and supplying an additional 
amount of heat to surface 1 to compensate for the work. Hence, if  T2 = TI’ the system 
could exchange heat with a single reservoir and produce work in violation of the second 
law. In the vapor9 some distance away from surfaces 1 and 2, heat conduction can be 
neglected because of the low thermal conductivity of the vapor. From the continuity and 
steady-flow energy equations, in the absence of heat conduction and shaft work, the 

Application of the second law of thermodynamics to the above system shows that T2 



velocity and temperature of the vapor a re  constant. Therefore, the temperature drop 
required by the second law must occur in the vicinity of the liquid-vapor interfaces. 
The presence of interphase temperature differences has been used to interpret heat- 
transfer measurements in film condensation of liquid-metal vapors (ref * 3). For ordi- 
nary (nonboiling) evaporation, however investigations of such temperature differences 
a r e  not available. Evaluation of the vapor temperature T3 for the present system is a 
difficult problem in the kinetic theory of gases. Nevertheless, the temperature drop 
(T1 - T2) can be estimated quite well. 

The treatment that follows is essentially that of references 3 and 4. It is assumed 
that the molecules leaving the surface have a half-Maxwellian velocity distribution, and 
those approaching the surface have a Maxwellian distribution with a small mass velocity 
toward or away from the surface. The condensation coefficient (ref. 3) is assumed to 
be unity. Evaluation of the difference in fluxes between these two distributions at sur- 
face 1 gives the net mass flux per unit area m, 

1 .  
2 

m x (2nRT1)- (pl - p3) + - m 

or 

where R is the gas constant for the vapor and p1 is the saturation pressure at T 
It is assumed that the relative temperature difference is small compared to the relative 
pressure difference. If the same expression is applied to surface 2 and p3 is elimi- 
nated between the two equations, we obtain 

Finally, since p1 and p2 are both saturation pressures, the Clapeyron relation 
(ref. 5) can be used to obtain the temperature difference 

1/2T1RT1 m * 

P l  hfg 
T1 - Tg (2nRT1) -- 

where h is the heat of vaporization per unit mass, For the 30-ki3Lowatt9 
lithium heat pipe described in appendix B, the heat flux to the liquid-vapor interface in 

fg 

3 



6 the evaporator is 99x10 watts per square meter and m x 0.106 kilogram per square 
meter per second. From equation (3) this gives T1 - T2 = 0.26 K 

The system of figure 1 can be modified to one that behaves much like a heat pipe by 
accelerating the vapor in a nozzle, passing it through a long passage with wall friction, 
and decelerating it in a diffuser before condensing it at surface 2 (see fig. 2). If the 
vapor passage is thermally insulated, by conservation of energy the temperature T4 of 
the vapor adjacent to surface 2 will equal T3. As the pressure p4 is less than p3 by 
the frictional drop in the intervening passage, the vapor at T3 and p4 will be super- 
heated. Hence, there-must be an additional temperature drop at surface 2 for condensa- 
tion to occur. This frictional contribution ATf to the temperature drop (TI - T2) can 
be calculated directly from the Clapeyron relation (ref. 5) .  

(P3 - P4) 
T1 RT1 

PI hfg 
ATf =-- (4) 

For the same 30-kilowatt lithium heat pipe, the pressure drop in the 300-centimeter 
adiabatic section is I.99XdO newtons per square meter. From equation (4) this gives 

. The temperature drop is now the sum of equations (3) and (4), 

In a real system the presence of a small  amount of noncondensable gas can increase 
the temperature drop predicted by equation (3). The gas will tend to collect at the con- 
densing surface and form a diffusion barrier to the vapor. In addition, the adsorption of 
the gas on the liquid surface can reduce the condensation coefficient. Both effects in- 
crease the pressure drop in the system and lead to a larger temperature difference. 
Finally, it must be repeated that all the temperature drops described above a re  in addi- 
tion to the dominant ones required to conduct heat to and from the evaporating and con- 
densing surfaces e 

3 

he' pressure drop in a heat pipe should be calculated between the points of maximum 
and minimum curvature in the meniscus at the liquid-vapor interfac 
occurs at the beginning of the evaporator, and the latter somewhere 
At low vapor pressures the vapor recovery term, which varies as 
exceed the frictional pressure drop in the liquid. Jn this case the minimum difference 
between vapor and liquid pressures, and hence, the minimum curvature in the meniscus, 
occurs at the beginning of the condensor. or the higher vapor pressures of interest 

4 



here, the recovery term is relatively small and the minimum occurs at the end of the 
condensor. 

Consider a heat pipe with an annular liquid return passage as sketched in figure 3. 
The cross section need not be circular, The vapor flow is assumed to be everywhere 
turbulent and incompressible. The effects of the changing velocity profile in the begin- 
ning of the evaporator a re  neglected since the pressure drop in this low-velocity region 
should be small. Turbulent vapor flow, once established, should persist well into the 
condensor. The liquid flow in the thin annulus is assumed to be laminar. 

A one-dimensional analysis is employed for the vapor flow. The pressure pv is 
assumed to be constant over the cross section, and the difference between the mean 
square velocity 2 and the square of the mean velocity Ti2 is neglected. This is'a 
reasonable approximation in turbulent flow where the velocity profile is somewhat flat- 
tened. Conservation of momentum for this model gives 

where x is the coordinate along the pipe, T~ the wall shear stress, pv the vapor den- 
sity, A the cross-sectional area, and C the wetted perimeter. Introduce the mass 
flow rate w = pVAD and the hydraulic diameter = 4 A/C, and write equation (5) as 

has been noted before (ref. 6) that the fluid dynamics of vapor flow in the evapora- 
tor and condensor of a heat pipe is equivalent to flow in a porous tube with injection or 
extraction of fluid at the walls. Measurements of wall shear stress in turbulent flow 
have been made for both injection (ref. 7) and extraction (ref. 8). A simple theory based 

data, has also been found to describe the injection data (ref. 0). Briefly9 it is assumed 
that the fluid striking the wall carries with it the free-stream axial momentum, while 
that leaving the wall carries zero axial momentum. Superposition of an injection or 
extraction rate h per unit wall  area on the normal turbulent flow leads to a reduction 
in the friction factor f in both cases. However, for extraction there is an additional 
term &'f in the wall  shear stress, The results of the analysis may be written: 

eynolds flux analogy (ref. 9), which was developed to interpret the extraction 

Injection: (7) 

5 



Extraction: 

with 

1 - 2 .  
T = - f p u  +m7i W 8 V  

f = f o  exp [ 
where f o  is the friction factor for m = 0. 

In the heat pipe the flow rate w varies linearly with x from zero to wt if  the 
wall  heat flux is constant. Hence, m = wt/C1, where 1 is the length of the appropriate 
section. It is assumed that the friction factor f o  can be taken as constant. In the evap- 
orator, equations (e),  (7), and (9) with Ti = w/pvA give 

ntegration of equation (10) from 0 to 1, with dw/dx = wt/le gives the pressure change 
in the evaporator 

2 

2 

where 

The function E4 is tabulated in reference 11. In the condensor, equations (6), (8), and 
(9) give 

6 



Integration of equation (13) from 0 to 1, with dw/dx = - wt/lc gives the pressure 
change in the condensor 

2 
D 

2 

The pressure recovery in equation (14) is only one-half the acceleration pressure drop 

Finally, the pressure change in the adiabatic section is readily obtained from.equa- 
tion (6) with dw/dx = 0 and 

2 
1 -2 - l f O W t  

Tw =jjf&u --- 
PA2 

8 

Integration of equations (6) and (15) from 0 to 1, gives the pressure change in the 
adiabatic section 

The total pressure change in the vapor is the sum of equations (1 ) 9  (14), and (16), 

2 

Z 3 wt 1 + E4(ze) + - 1 E4(zc) + - - APv - - z z  
PVA zC 

(15) 

The laminar flow in the liquid-return annulus can be treated in an equally simple 
fashion. From the two-dimensional analysis of fully developed laminar flow in a porous 
channel (ref. 12), it is seen that the velocity profile is almost parabolic when the wall 

eynolds number, Rw = afid/pl with d the annular spacing and p l  the viscosity, is 
less than 1 in magnitude. This is normally the case. For a parabolic profile we have 

P p i  
T w = 6 -  

d 



and 

where the bar again indicates the mean value. Conservation of momentum requires 

- 
2 

- A - - Crw = plA - 
dx dx 

dpl du 

where the parameters have the same meaning as in equation (5). Combining equa- 
tions (18) to (20) and setting Ti: = w/plA and A = 1/2 Cd gives 

dx 

When equation (21) is integrated over the entire length of the liquid-return channel, the 
second term cancels, and the total pressure change in the liquid is given by 

where 

A 1  
2 

1 = - (le + z c )  + 1, 

The expressions for Apv and Apt a r e  valid only if the heat pipe has the same 
cross section throughout. When this is not the case, the cancelation of terms between 
evaporator and condensor will not occur, and there will be additional frictional losses 
in the transition regions between the sections. An example of this type is considered 
later. 

The total frictional pressure drop (Apv + Apl) must be balanced by the rise in pres- 
sure  across  the capillary screen in the evaporator. The maximum flow rate, and there- 
fore the heat flux, in a high-temperature heat pipe is thus Limited by the requirement 

2 0 + A p v + A p l >  0 
r 

8 

(23) 



where (T is the liquid surface tension and r the pore radius of the capillary screen. 
In practice one would like to operate well within this limit as a safety factor. 

The equations of the previous section have been used to calculate the pressure drops 
in two lithium heat pipes. The details of the calculations, including checks on the valid- 
ity of some of the basic assumptions, are presented in appendix B. These could be of 
use to a designer. The results of the calculations are presented in this section. ~ 

be 1.0 centimeter in outside diameter by 35 centimeters long and to carry 10 kilowatts 
thermal power at an operating temperature of 1800 K. The internal dimensions are 
evaporator length, 2, = 15 centimeters; adiabatic section length, 1, = 5 centimeters; 
condensor length, 2, = 15 centimeters; wall thickness, 0.75 millimeter; annular spac- 
ing, d = 0.25 millimeter; screen thickness, t = 0.15 millimeter. A realistic pore size 
for the screen is given by r = 50 micrometers. Hence, the limiting capillary pressure 
r ise  is 2 u / r  = 7.5X10 newtons per square meter. 

For this case equations (17) and (22) give 

The first heat pipe might be used to cool a small compact nuclear reactor. It is to 

3 

Apv = -6.25X10 2 N/m 2 

Ap2 = -1.66~10 3 N/m 2 

3 and the total pressure drop of -2.29X10 newtons per square meter is well within the 
capillary pressure rise. Although Apv is only 27 percent of the total pressure drop, 
the second term in the wall shear s t ress  for the condensing vapor (eq. (8)) accounts for 
72 percent of Apv. 

reactor to a string of thermionic converters. It is to be centimeters in outside 
diameter by 450 centimeters long, with a 300-centimeter abatic section, and to carry 
30 kilowatts thermal power at an operating temperature e In the evaporator 
and condensor a thin liquid-return annulus is desirable to reduce the radial temperature 
drop produced by heat conduction into and out of the pipe. In the long adiabatic section, 
however, a thin annulus p ces an excessive pressure drop, proportional to d-3, in 
the liquid (see eq. (22)). solution is to select a larger value of d for this section 
by minimizing the sum of the vapor and liquid pressure drops with respect to d. The 
screen is taken to have the same pore size as in the previous case. 

Next consider a long heat pipe which might be used to carry heat from a nuclear 

9 



the evaporator and condensor the internal dimensions are evaporator length, 
= 30 centimeters; condensor length, 2, = 820 centimeters; wall thickness, 0.75 mil- 2 

limeter; annular spacing, d = 0.5  millimeter; and screen thickness, t = 0.25 milli- 
meter. For this case, equations 7)  and (22) give 

e 

2 

3 and the total pressure drop is -1.48X10 newtons per square meter. Here the second 
term in the wall shear stress for the condensing vapor is 64 percent of Apv and 15 per- 
cent of the total drop. 

In the adiabatic section, minimizing the total pressure drop gives d M 1.0 milli- 
meter. This of course means that the diameter of the vapor passage is reduced from 
its value in the evaporator and condensor sections by I. 0 millimeter. The resulting 
pressure drops are 

,*-* 
2 

2 Ap2 = -5. 85X102 N/m 

3 and the total drop is -2.58X10 newtons per square meter. Here Apv is 77 percent of 

newtons per square meter which is again well within the capillary pressure rise of 
7.5X10 newtons per square meter. Note that if the transitions from the 0.5 millimeter 
annulus in the evaporator and condensor to  the 1.0-millimeter annulus in the adiabatic 
section are sufficiently gradual, the flow of liquid and vapor through the transitions will  
produce negligible pressure drop. 

An alternative means of reducing the pressure drop in the adiabatic section is to 
return the liquid in a porous artery.  The ar tery is made just large enough to keep the 
liquid flow laminar. For the present case this requires an inside diameter of 0.5 centi- 
meter. The resulting pressure drops are 

the total pressure drop. Finally, the total pressure drop for the heat pipe is -4.06X10 3 

3 

3 2 Apv = -8.99X10 N/m 

Ap2 = -1.64XI0 2 N/m 2 

PO 



3 and the total drop is -2.  
entire heat pipe is now -3.63X10 newtons per square meter. 

0 newtons per square meter. The pressure drop for the 
3 

A simple evaporation-heat-transfer system has been studied to determine the loca- 
tion and magnitude of the temperature drop required by the second law of thermody- 

he drop occurs at the liquid-vapor interfaces and is quite small for a high- 
temperature heat pipe. In the heat pipe the increased wall friction associated with the 
condensation process in turbulent flow reduces the pressure recovery by a factor of 2. 
Finally, for a heat pipe with a long adiabatic section, the pressure drop can be mini- 
mized by a proper selection of the ratio between the liquid and vapor cross sections. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

hio, February 3,  1971, 
120-27. 



A cross-sectional area 

C! wetted perimeter 

hydraulic diameter, 4A/C 

mean diameter of annulus 

Dv diameter of vapor passage 

d anqular spacing 

E4 exponential integral, eq. (12) 

f friction factor 

friction factor for m = o f O  

U 

W 

wt 
X 

2 

rW 

axial velocity 

local mass flow rate 

total mass flow rate 

axial coordinate 

dimensionless parameter, 

viscosity 

density 

surface tension 

wall shear stress 

heat of vaporization Subscripts: 
hfg 
2 length of passage a adiabatic section 

? effective length, eq. (22) C condensor section 

Mach number e evaporator section 

m mass injection or  extraction rate 2 liquid 

P 

per unit wall area 

pressure 
V vapor 

f 2,3,4 positions in evaporation- heat- 
Ap pressure change transfer system (figs. 

W 

X 

r 

sV 

AT% 

T 

t 

heat-transfer rate 

gas constant for vapor 

eynolds number, md/p 

axial Reynolds number 

pore size of capillary screen 

speed of sound in vapor 

absolute temperature 

temperature drop due to wall 
friction 

screen thickness 

and 2) 



P 

7 hfg = 1.88Xl.O J/kg 

pv = 3 . 1 1 ~ 1 0  N/m 5 2 

1 3 P, = 1.44X10- kg/m 

2 

pz = 3.87x10 2 kg/m3 

The speed of sound in monatomic lithium vapor is 

1 2  
= 190 m/sec 

For a pore size r = 50 pm, the limiting capillary pressure rise is given by 2 o/r = 

7 . 5 ~ 1 0 ~  N/m2. 
For the first heat pipe Q = 10 kw = 0 4 J/sec, and 

Wt=-=  ' 5. 32XlL0-4 kg/sec 
hfg 

he internal dimensions are 

2, = 1 5 c m ,  1 = 5 c q  2, = 1 5 c m  a 

= 0.7% cm, t = 0.15 mm, d = 0.25 mm 
V 

13 



Hence, 

2 C V = n D  V = 2 . 4 2 c m Y  

+ 2t + d) = 5.18 cm 

Before calculating the pressure drops a few checks are desirable: 

- - vJt uv - - = 79 m/sec 
pvAv 

- 
M = - -  uv - 0.042 << 1 

fo  M 0.042 (ref. 

hence, the vapor flow is incompressible and turbulent; 

- - - 4wt = 2.0XlO 2 < 10 3 

h C l  
X l  

d md 

P l  ‘e 
- = 0.117 < Rwl =- NN 

and the equid flow is laminar with a parabolic velocity profile. The pressure drops are 

14 



obtained from equations (87) and (22): 

2 
1 wt 2 - - = 4.53x 
2 p  A2 v v  

*V ze = z  =-=1.22 
fO1e 

C 

- 8  2 ze E4(ze) = 0.107 (ref. 

fOza 

Dv 
z-' = - = 0.273 a 

Apv = -4.53X10 2 X (1 + 0.107 + 0.273) = -6.25X10 2 N/m 2 

A 

I = 2 0 c m  

ApI = - 24 P p t i  = -1.66X10 3 N/m 2 
n 

and 

For the second heat pipe = 30 kw = 3x80 4 J/sec, and 

wt = . ~ O X ~ O - ~  kg/sec 

hfg 

The internal dimensions for the evaporator and condensor a re  

1 = 30 em, I ,  = I20 cm e 

Dv = 1.60  em, t = 0.25 mm, d = 0.50 mm 



Hence 

1 2  2 
4 

C = n B  = 5 . 0 3 c m 7  A v = - n B v = 2 . 0 1 c m  V V 

+ 2t + d) = 10.7 cm 
V 

The same checks as before are desirable: 

- - wt 

pvAv 
uv - - = 55.3 m/sec 

- 
uV M =-  = 0.029 << 1 

Etxv - - - 4wt - - 6. O6X1Q3 
. PVCV 

f o  = 0.036 (ref. 14) 

Hence, the vapor flow is incompressible and turbulent; 

Rx2 = - 4wt = 2.9XlO 2 < 10 3 

EJ.ZC' 

and the liquid flow is laminar with a parabolic velocity profile. The pressure drops are 

6 



obtained from equations (67) and (22): 

2 
a wt 2 2 - - = 2 .20~10  N/m 
2 p  A2 v v  

V z =-=1.48 e 
fOze 

ze' E4(ze) = 0.032 (ref. 10) 

- V zC - - = 0.370 
fOzc 

zcl E4(zc) = 0.533 

2 2 2 Apv = -2.20X10 X (1 + 0.03 + 0.53) = -3.43X10 N/m 

A 

2 = 7 5 c m  

and 

3 2 Ap + Apz = -1.48X10 N/m 
V 

In the adiabatic section of the long heat pipe the sum of the vapor and liquid pressure 
drops is given by equations (16) and (22) 



where is the inside diameter of the pipe. I is minimized with respect to d, one finds d x 1.0 mm, 
= 1.65 em. Hence, 

- 4wt 3 Rxv - - = 6.5X3.0 
%lev 

f o  M 0.035 (ref. 

and with Za = 300 em, 

2 w f  2 

2 5 
Apv = - - O “ = - 1 . . 9 9 ~ 1 0  3 N/m 2 

* pvDv 

Ap2 = - - a = -5.85X10 2 N/m 2 
P W 2  

?T 

Apa = Apv + Ap2 = -2.58X10 3 N/m 2 

Finally, the total pressure drop for the long heat pipe is -4.06~10 3 N/m 2 
If an arterial  liquid return passage is used in the adiabatic section of the long heat 
, laminar flow requires 

2 =  

x 0.5 em and the liquid pressure dro 2 ence, 

18 



If the porous ar tery has the same wall thickness as the capillary screen, 

a Cv = % , 2 3  ~ 1 ~ 1 ,  Av = 2.17 

- 4wt 3 - - = 4.2x10 xv 
V V  

fm x 0.042 (ref. 

The pressure drop in the vapor is given by 

w2f c 1 3 2 Apv = - - 1 v a =-1 .99~10  N/m 
8 3 

pvAv 

and 

3 2 Apa = Apv + Apl = -2.15X10 N/m 

3 2 The total pressure drop for the long heat pipe is now -3.63X10 N/m . 
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Figure 1. - Evaporation-heat-transfer system. 

1 3  4 2  
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Figure 2. - Heat-pipe-like system. 
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Figure 3. - Heat pipe with annular l iquid return.  
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